
Getting Started with HPC Clusters

Kai Himstedt, Nathanael Hübbe, and Hinnerk Stüben
Universität Hamburg

December 2019



Introductory remarks

I this set of slides is a result from the PeCoH project
– Performance Conscious HPC –

I https://www.hhcc.uni-hamburg.de/pecoh/

I https://wr.informatik.uni-hamburg.de/research/projects/pecoh/start

I the slides were auto-generated from markdown sources in the
framework of our skill tree text processing environment

I https://www.hhcc.uni-hamburg.de/files/hpccp-concept-paper-180201.pdf (section 3.2)

I acknowledgement
This work was supported by the German Research Foundation (DFG)
under grants LU 1353/12-1, OL 241/2-1, and RI 1068/7-1.



Overview

I Introduction
I System Architectures
I Hardware Architectures
I I/O Architectures
I Performance Frontiers
I Parallelization Overheads
I Domain Decomposition
I Job Scheduling
I Use of the Command Line Interface
I Using Shell Scripts
I Selecting the Software Environment
I Use of a Workload Manager
I Benchmarking



Getting Started with HPC Clusters (Basic)



Introduction

What is HPC?
I tautological definition

I “You are doing HPC when you are using HPC hardware.”
I traditional definition

I run computer simulations in natural sciences and engineering
as fast as possible

I performance metric: FLOPS or Flop/s
(double-precision floating-point operations per second)

I other performance metrics
I time-to-solution
I time to get a task done
I search operations per second
I . . .

I common denominator
I powerful hardware



Introduction

HPC software environment
I the operating system is GNU/Linux
I interactive access is limited

I graphical user interfaces are unusual
I the command line has to be used

I a batch system has to be used
I batch jobs are being prepared and managed from the command

line
I batch jobs have to be formulated as shell scripts
I job inputs must be prepared beforehand



Introduction

Need for parallel processing

I parallelization is needed in order to significantly speed up
computations

I the basics of parallel computing must be understood
I parallel performance needs to be checked: is the runtime

(almost) n times shorter when n times as many compute cores
are used?



System Architectures (Basic)



HPC cluster architecture

Data communication network

✛
Internet

Login nodes Disk systems Compute nodes

/home /work



HPC cluster architecture

What the user sees
I login nodes
I compute nodes
I special nodes (e.g. for pre- and post-processing)
I disk systems
I data communication network

Nodes that work in the background

I admin/management nodes
I system services nodes
I disk nodes



Hardware Architectures (Basic)



Parallel computer architectures (1)

Components of a parallel computer

I compute units
I main memory
I high speed network

Compute units

I CPUs
I GPUs / GPGPUs
I FPGAs
I vector computing units



Parallel computer architectures (2)

Main memory architecture

Conceptually, the high speed network connects compute units and
main memory.

I shared memory
I a single computer
I all compute compute units can access the whole memory

I distributed memory
I multiple computers (e.g. a cluster)
I data exchange via the network

I NUMA (Non-Uniform Memory Access)
I logically shared memory (global address space)
I physically distributed memory (memory speed depends on the

NUMA distance)



I/O Architectures (Basic)



I/O architectures (1)

Local file systems

I accessible inside a node

Global file systems

I accessible from all nodes

Object stores

I are typically remote systems
I might only be accessible from the login nodes



I/O architectures (2)

Global file system examples

I distributed (network) file systems
I no concurrent write to a single file

I parallel (cluster) file systems
I concurrent writes to a single file
I provide high I/O bandwidth

I file system with hierarchical storage management (HSM)
I two (or more) kinds of media: small-fast and large-slow
I if the slow medium is tape: number of files must be kept

manageable



Performance Frontiers (Basic)



Floating Point Operations per Second (FLOPS)

FLOPS (also: Flop/s)

I popular way to measure computational power of HPC systems
I in the order of several PetaFLOPS (PFLOPS)

for the top HPC systems of 2017
I peak performance of a powerful PC: ≈ 1 TeraFLOPS (TFLOPS)

I 1PFLOPS = 1000TFLOPS = 1015FLOPS
I also measurement for work performed by applications

TOP 500 list1

I lists the most powerful machines ranked by FLOPS
I measured using the Linpack benchmark
I updated twice a year
I shows past and current trends in HPC

1https://www.top500.org/lists/

https://www.top500.org/lists/


Pitfalls of FLOPS

There are other critical resources than FLOPS
I memory latency & bandwidth
I network latency & bandwidth
I I/O performance

No clear correlation to real performance

Anything is possible:

I wasteful app with high FLOPS
I wasteful app with low FLOPS
I highly optimized app with high FLOPS
I highly optimized app with no FLOPS

FLOPS cannot tell the wasteful and the optimized apart!



Moore’s Law

Moore’s law2 (1965, revised in 1975) states

I the complexity of integrated circuits3 doubles approximately
every two years

I peak performance of CPU cores for HPC systems doubles too
I true in the past
I this increase in performance gain is no longer achieved

I no more improvements of sequential performance
I CPU clock rates have settled around 2.5 GHz

I but many cores are used for processing a task in parallel
I parallel computing will become increasingly relevant

2https://en.wikipedia.org/wiki/Moore%27s_law
3https://en.wikipedia.org/wiki/Integrated_circuit

https://en.wikipedia.org/wiki/Moore%27s_law
https://en.wikipedia.org/wiki/Integrated_circuit


Speedup, efficiency, and scalability

Speedup4

I speedup
I relation between sequential and parallel runtime of a program
I Sn = T1

Tn
I where

I T1 = runtime on a single processor
I Tn = runtime on n processors

I ideal case (“linear scaling”)
I Sn = n

I in practice linear speedup is not achievable due to overheads
I synchronization

(e.g. for waiting for partial results)
I communication

(e.g. for distributing partial tasks and collecting partial results)

4https://en.wikipedia.org/wiki/Speedup

https://en.wikipedia.org/wiki/Speedup


Speedup, efficiency, and scalability

Efficiency5

I En = Sn
n

Scalability

I goal: efficiency remains high when the number of processors is
increased

I also called: good scalability6 of a parallel program

5https://en.wikipedia.org/wiki/Speedup
6https://en.wikipedia.org/wiki/Scalability

https://en.wikipedia.org/wiki/Speedup
https://en.wikipedia.org/wiki/Scalability


Speedup, efficiency, and scalability

Scalability in practice

I some problems can be parallelized trivially
I e.g. rendering (independent) computer animation images7

I nearly linear speedup also for a larger number of processors
I there are algorithms having a so-called sequential nature

I e.g. alpha-beta game-tree search8

I these have been notoriously difficult to parallelize
I typical problems in scientific computing9 are somewhere

in-between these extremes

7https://en.wikipedia.org/wiki/Render_farm
8https://www.chessprogramming.org/Parallel_Search#ParallelAlphaBeta
9https://en.wikipedia.org/wiki/Computational_science

https://en.wikipedia.org/wiki/Render_farm
https://www.chessprogramming.org/Parallel_Search#ParallelAlphaBeta
https://en.wikipedia.org/wiki/Computational_science


Speedup, efficiency, and scalability

In general, the challenge is to achieve

I good speedups
I good efficiencies

Important aspect

I use the best known sequential algorithm for comparisons in
order to get fair speedup results



Amdahl’s law

Amdahl’s law10 (1967) states

I there is an upper limit for the maximum speedup of a parallel
program

I which is determined by its sequential, i.e. non-parallelizable part
I e.g. for initialization or I/O operations
I more generally, for synchronization and communication

overheads.

10https://en.wikipedia.org/wiki/Amdahl%27s_law

https://en.wikipedia.org/wiki/Amdahl%27s_law


Amdahl’s law

Example

I sequential runtime: 20 hours on a single core

I non-parallelizable part: 10% (2 hours)
I total runtime would be at least 2 hours

I parallelizable part: 90% (18 hours)
I maximum speedup is limited by 20hours

2hours = 10



Amdahl’s law

Speedup calculation example

I cores used: 32

I runtime of parallelizable part ≥ 18hours
32 = 0.56 hours

I total runtime ≥ 2 hours + 0.56 hours = 2.56 hours

I speedup ≤ S32 = 20hours
2,56hours = 7.81

I efficiency ≤ E32 = S32
32 = 7.81

32 = 24.41%.



Amdahl’s law

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000

s
p
e
e
d
-u

p

#processes

ideal
maximal
Amdahl
realistic



Parallelization Overheads (Basic)



Parallelization overhead

Parallelization always introduces overhead

I trivial parallelism (many independent tasks)
I task management

I application parallelism (decomposition of a single application)
I data communication (between processes)
I synchronization (of threads)
I additional operations, e.g.

I global reduction operations (algorithmic level)
I address calculations (software level)



Parallelization overhead

Other sources of parallel inefficiency

I the problem itself
I unbalanced load

I software
I serial parts (cf. Amdahl’s law)

I hardware
I NUMA
I false sharing



Domain Decomposition (Basic)



Domain decomposition

I a technique for parallelizing programs that perform simulations
in engineering or natural sciences

I needed on distributed memory systems

I the model to be simulated is defined in a certain geometric
region

I that region is decomposed into domains
I each process works on one or more domains

I typically domains have halo regions
I data from surfaces of neighbouring domains
I i.e. data from neigbouring processes



Performance impact (1)

Domain size
I data communication overhead = update of halo regions

∝ surface
volume

I example: d-dimensional cube
I linear extension: L
I volume: Ld

I surface: 2dLd−1 (size of halo region)
I surface / volume = 2d/L

I overhead becomes prohibitive if the volume becomes too small



Performance impact (2)

Domain shape

I example: rectangular domains
I starting point: square

I linear extension: L
I volume: L2

I surface: 4L
I surface / volume: 4/L

I rectangles with the same volume
I linear extensions: Lx × L/x
I volume: L2

I surface: 2L(x + 1/x)
I x = 1⇒ surface / volume = 4/L
I x = 2⇒ surface / volume = 5/L
I . . .
I x = L⇒ surface / volume = 2 + 2/L2 ≈ 2

I long narrow domains are disadvantageous



Job Scheduling (Basic)



Motivation

HPC resources can be
I shared (e.g. login nodes, global file systems)
I non-shared (e.g. compute nodes)

Job scheduler
I manages resources
I goals

I high resource utilization
I fairness



Batch systems vs. time sharing systems (1)

Time sharing

I give users that are using the same computer at the same time
the impression that the are using a dedicated computer

I is interesting for interactive use, e.g. on a login node



Batch systems vs. time sharing systems (2)

Batch systems

I non-interactive computer use
I processing of batch jobs
I batch job

I a sequence of commands written to a file
I steps

I job creation (edit job)
I job submission (put job into a batch queue)
I job monitoring (watch queue for start/completion)
I job management (delete/cancel job)



Job scheduling

Scheduling

I process of selecting and allocating resources to jobs waiting for
execution

I goals
I maximize resource utilization
I maximize throughput
I minimize waiting time
I minimize turnaround time (waiting time + execution time)

Workload managers

I implement job scheduling
I examples

I SLURM
I TORQUE



Scheduling algorithms

First-Come-First-Served (FCFS)

I jobs are executed in the order of submission

I simple algorithm: no optimization, poor performance

I basis for more sophisticated algorithms



Scheduling algorithms

Shortest-Job-First (SJF)

I uses execution time limits

I minimizes average waiting time

I starvation problem
I if short jobs are constantly being submitted, a longer job might

never be started



Scheduling algorithms

Priority

I affects the position of a job in the queue
I internal priorities (per batch job)

I job size
I number of nodes
I time limit
I memory limit

I job aging
I other resources, e.g. licenses

I external priorities (per user or group)
I deadlines (e.g. for weather forecast)
I amount of funds paid for the computer



Scheduling algorithms

Fair-share
I goal

I achieve resource utilization that is proportionate to shares
I method

I take job history into account



Scheduling algorithms

Backfilling

I fill nodes with jobs that
I have lower priority than bigger jobs waiting for resources
I fit into holes

(are completed before the bigger jobs are planned to start)



Use of the Command Line Interface (Basic)



Command line usage

The prompt

I the prompt is defined in the variable PS1
I try: echo $PS1

system definition example

Bourne shell PS1='$ ' $
bash PS1='\s-\v\$ ' bash-4.4$
CentOS PS1='[\u@\h \W]$ ' [user1@host1 ~]$

I for the root user ‘#’ is used instead of ‘$’



Facilitate typing

File name completion

key function

<tab> command and filename completion

Command history

key function

<up-arrow> go to previous/older command(s)
<down-arrow> go to newer command(s)



Facilitate typing

Command line editing

key function

<left-arrow> go 1 character to the left
<right-arrow> go 1 character to the right
<pos1> go to beginning of line
<end> go to end of line
<backspace> delete character to the left of the cursor
<delete> delete character below the cursor



Control keys

Unexpected behaviour might occur when pressing control keys

key function

<ctrl-c> interrupt
<ctrl-d> end of input
<ctrl-l> clear screen
<ctrl-s> pause output
<ctrl-q> resume output
<ctrl-z> pause process (resume with fg)

Control-keys known from Windows don’t work!



Types of commands

A command can be
I an executable program
I a shell builtin
I a shell function
I an alias

The type builtin tells which is which



type examples

$ type ls
ls is /usr/bin/ls

$ type pwd
pwd is a shell builtin

$ type module
module is a function
module ()
{

eval `/usr/share/Modules/$MODULE_VERSION/bin/modulecmd bash $*`
}

$ type ll
ll is aliased to `ls -l'



Command line arguments

Arguments can be

I options
I filenames
I other parameters

Typical syntax of most commands

I command [-options] [filenames]



Command line syntax

Specifying options

description example

-letter ls -l -R
-letters ls -lR
-letter value ls -I '*.o'
- -keyword ls --recursive
- -keyword value ls --ignore '*.o'
- -keyword=value ls --ignore=*.o
-keyword find . -print
-keyword value find . -name lost.c -print
keyword=value dd if=infile bs=512 count=1



Specifying filenames

Filenames can be specified with

I absolute path
I absolute paths begin with /
I all directories starting with the root directory are specified

I relative path
I relative paths do not begin with /
I specification relative to the current working directory

example explanation

file1 file1 is in the current working directory
./file1 . stands for the current working directory
../file2 .. stands for its parent directory
../dir2/file2 ../dir2 is a directory in the parent directory



Specifying filenames

Wildcards

character matches

* zero a more characters
? a single character

Escape character \ (backslash)

characters match

\* a literal *
\? a literal ?



Getting help

Executable programs

I man-pages
I if the name of the command is known

I general format: man command
I example: man ls

I search for keywords in command descriptions
I general format: man -k keyword
I example: man -k pdf

Shell builtins
I help command

I general format: help command
I example: help echo



How executable programs are found

PATH
I programs are searched in directories specified in the PATH

environment variable
I PATH is a colon separated list of directories

$ echo $PATH
/usr/local/bin:/usr/bin:/bin

I the which command shows the full path to a command

$ which ls
/usr/bin/ls



Pitfalls

I There is no undo!
I files can be accidentally deleted
I files can be accidentally overwritten

I in theses examples file b is overwritten
I cp a b
I mv a b
I cat a > b
I tar -cf b a



Pitfalls

-i option

I some commands can ask for confirmation (-i option)
I aliases might be predefined that include -i
I this can be dangerous:

I such aliases might not be predefined on a new system



Pitfalls

Starting programs/scripts that are in the working directory

I for security reasons . (the current working directory) is not
included in PATHs

I scripts or programs that are in the current working directory
must be started this way:

I ./my.script



Frequently used commands

Browsing the directory tree

command description

pwd print name of working directory
cd change working directory
ls list directory contents



Frequently used commands

Browsing the directory tree

command description

cd change to the home directory
cd .. change to the parent directory
cd directory change to the specified directory
cd - change to the previous directory
ls list contents of the current directory
ls .. list contents of the parent directory
ls directory list contents of the specified directory
ls ~ list contents of the home directory
ls -l [directory] list contents in long format



Frequently used commands

Looking into text files

command description

less view file (forward-, backward movement, searching)
cat print (concatenate) files
head print the first lines of a file
tail print the last lines of a file



Frequently used commands

Managing files and directories

command description

mkdir create (make) a directory
rmdir remove (an empty) directory
cp copy files
cp -r copy recursively
cp -rv copy recursively, print what is being copied
mv move or rename files or directories
rm remove/delete files
rm -r remove files recursively
rsync synchronize directories
ln -s create a symbolic link



Frequently used commands

Searching and sorting

command description

grep search for strings in text files
find search for files
sort sort text files

I search for a string in all .txt files under the current working
directory

find . -name '*.txt' -exec grep SearchText {} \;



Frequently used commands

Operations with text files

command description

wc word count - counts chars, world and lines
diff compares 2 files
diff3 compares 3 files
sed stream editor - text transformation



Frequently used commands

(Un)packing and (un)compressing

command description

tar (un)packing (archiving) files
gzip (un)compressing files (extension .gz)
bzip2 (un)compressing files (extension .bz2)
xz (un)compressing files (extension .xz)
unzip extract files from .zip archive



Frequently used commands

Calculate and verify checksums

command description

cksum CRC checksums
md5sum MD5 (128-bit) checksums
sha256sum SHA256 (256-bit) checksums



Frequently used commands

Set execute permission

command description

chmod +x make a shell script executable



Frequently used commands

Check machine utilization

command description

ps snapshot report of current processes
top real-time view of a running processes
free print free and used memory
vmstat report I/O (virtual memory) statistics
df report disk space usage (disk free)
du disk usage of directory hierarchies

I -h option
I human-readable output format
I available for: free, df, du



Frequently used commands

Remote access and file copy

command description

ssh secure shell - remote login
scp secure copy - remote copy
rsync remote (and local) synchronization



Frequently used commands

Miscellaneous commands

command description

date print current date and time
time print resource usage of a command
kill terminate a process by ID
killall kill processes by name
echo print command of the shell
exit shell exit - logout



Environment variables

Environment variables are exported to all programs in a calling
tree

action command

definition export name=value
print value echo $name
print all values export
print environment printenv



Environment variables

Frequently used environment variables

variable meaning

HOME home directory (shortcut: ~)
LESS options for less (-i: case insensitive search)
LOGNAME username (login name)
PATH command search paths
PWD current working directory
TMPDIR directory for temporary (scratch) files
USER username



Environment variables

Language settings

variable comment

LANG language and character encoding, e.g. en_US.UTF-8
LC_* detailed language settings, cf. man locale



I/O redirection and pipes

Output from any command can easily be saved in a file

ls > listing1

Input can be read from a file (instead of being typed)

cat < input2

Pipes

I reading long output page by page

command-producing-long-output | less

I filter output for error messages

command | grep error-message-pattern



Remote login

Secure Shell clients
I Linux and MacOS

I OpenSSH
I Windows

I OpenSSH
I putty
I MobaXterm



Remote login

Public key authentication

I an alternative to password authentication
I it is virtually impossible to guess a key
I entering the password cannot be observed

I should be protected with a passphrase
I can be generated with ssh-keygen:

I ssh-keygen -t rsa -b 4096
I the public key ~/.ssh/id_rsa.pub

I has to be appended to ~/.ssh/authorized_keys on the
remote computer

I or has too be sent/uploaded to the computing center
I ssh-add and ssh-agent can be used

I to unlock the private keys
I the passphrase has to be entered only once per local session



Remote login

Agent forwarding

I is a technique to connect to a third computer
I ssh-agent is needed

Example

I log into hpc_1

your_computer$ ssh -A user_1@hpc_1.example.com

I from there, log into hpc_2

hpc_1$ ssh user_2@hpc_2.example.com

I copy a file from hpc_1 to hpc_2

hpc_1$ scp example.c user_2@hpc_2.example.com:



Text editors

I on an HPC cluster one has to work with text files:
I batch scripts
I input files

I on the cluster itself
I terminal mode is typical

(or text mode in contrast to a graphical mode)
I text editors are available in text mode



Text editors

Classic Unix/Linux text editors

I vi, vim
I is automatically installed on all Linux systems

I GNU emacs
I is probably installed on your HPC cluster as well

Small, more intuitive editor
I nano

I is installed on many systems



Text editors

Least thing to know: key strokes to quit

editor keys action

vi <esc>:q! quit without saving
vi <esc>ZZ save and quit
emacs <cntl-x><cntl-c> quit
nano <cntl-x> quit

emacs and nano ask how to proceed with unsaved files



Text editors

Using a graphical interface

I vim and emacs have graphical interfaces
I other graphical editors might be installed:

I gedit
I kate

I a graphical editor requires X11 forwarding
I is switched on with ssh -X
I can be slow

I an editor on the local computer can be used
I copy files back and forth
I work transparently on the remote system after mounting its file

system with SSHFS



Using Shell Scripts (Basic)



Using shell scripts

What is a shell script?

I a sequence of commands that is written into a file

cd /work/user1/project1
my-simulation-program input1



Using shell scripts

More compliated scripts use

I variables
I x=foo
I y=$foo

I arguments from the command line
(unusual for batch scripts)

I $1 $2 ...
I execution control

I if
I case
I for



Scripting for batch jobs

Manipulating filenames (character string processing)

action command result

initialization a=foo a=foo
b=bar b=bar

concatenation c=$a/$b.c c=foo/bar.c
d=${a}_$b.c d=foo_bar.c

get directory dir=$(dirname $c) dir=foo
get filename file=$(basename $c) file=bar.c
remove suffix name=$(basename $c .c) name=bar

name=${file%.c} name=bar
remove prefix ext=${file##*.} ext=c



Scripting for batch jobs

Recommendation: Never use white space in filenames!

I is error prone
I quoting becomes necessary: dir=$(dirname "$c")



Scripting for batch jobs

Temporary files

I choice of the directory/file system
I tmp might be too small
I $TMPDIR is a candidate
I consider local vs. global file systems
I assume that /scratch is suited and set

I top_tmpdir=/scratch
I unique filenames

I mktemp generates names from templates
I a sequence of Xs is replaced by a unique value
I a directory with that name is created
I include $USER for easy identification

I my_tmpdir=$(mktemp -d "$top_tmpdir/$USER.XXXXXXXX")



Scripting for batch jobs

Temporary files

I automatic deletion
I trap "rm -rf $my_tmpdir" EXIT

I now the temporary directory is ready
I cd $my_tmpdir
I do some work



Scripting for batch jobs

Tracing command execution

I set -v
I print commands as they appear literally in the script

I set -x
I commands are printed as they are being executed

(i.e. with variables expanded)



Scripting for batch jobs

Error handling

I set -e
I exit script immediately if a command ends with an error

(non-zero) status
I handling exceptions: or operator ||

command_that_could_go_wrong || true

I set -u
I exit script exit if an undefined variable is used
I handling exceptions:

if [[ ${variable_that_might_not_be_set-} = test_value ]]
then

...
fi



Scripting for batch jobs

Trivial parallelization

I starting more than one executable
I example: running on 2 graphics cards:

CUDA_VISIBLE_DEVICES=0 cudaBinary1 input1 &
CUDA_VISIBLE_DEVICES=1 cudaBinary2 input2 &

wait

I more powerful tool: GNU Parallel1
I can start many tasks
I can process a task queue

1https://www.gnu.org/software/parallel

https://www.gnu.org/software/parallel


Selecting the Software Environment (Basic)



Environment Modules

Introduction
I a tool for managing environment variables of the shell

I module load command
I extends variables containing search paths (e.g. PATH)

I module unload command
I inverse operation
I removes entries from search paths.

I software can be provided in a modular way



Environment Modules

Initialization
I the module command is a shell function

I needs to be defined in every instance of the shell
I interactive environments

I is typically handled automatically
I batch environments

I explicit initialization might be necessary
(see documentation of your cluster)



Environment Modules

Naming

I format of Module names
I program
I program/version

I default version
I might be explicitly defined in your Module system
I otherwise, Module guesses the latest version

I recommendation
I always specify a version



Environment Modules

Dependences and conflicts

I dependences
I enforces that other Modules must be loaded first

I conflicts
I enforces that other Modules must be unloaded first



Environment Modules

Caveats
I Modules suggest modularity

I true for application Modules
I no longer true for compiler and library modules

I solutions for compilers and libraries
I version is augmented by additional information
I a toolchain is built

I a compiler has to be loaded first
I then MPI Modules becomes visible
I then libraries and software becomes visible



Environment Modules

Important commands

I module list

I module avail

I module load program[/version]

I module unload program

I module switch program program/version

I module [un]use [--append] path



Environment Modules

Self-documentation
I module display program/version

I module whatis [program/version]

I module help program/version

I module help (help on module itself)

See also
I man module



Use of a Workload Manager (Basic)



Workload managers

Tasks
I job control

I submission
I monitoring
I cancellation

I scheduling and resource management
I select waiting jobs for execution
I allocate and monitor resources

I accounting
I record resource usage



Workload managers

Popular workload managers

I SLURM
I Simple Linux Utility for Resource Management
I includes scheduling algorithms

I TORQUE
I Terascale Open-source Resource and QUEue Manager
I needs a scheduler in addition (e.g. Maui or Moab)



Workload managers

TORQUE
I PBS (Portable Batch System) history

I TORQUE is an open source implementation of PBS
I other PBS implementations: OpenPBS, PBS Pro(fessional)
I PBS started in 1991

I Command syntax
I command names begin with a q

I qsub
I qstat
I qdel



Workload managers

SLURM
I has gained much popularity in the recent past

I is open source

I commercial support since 2010

I command syntax
I command names begin with an s

I sbatch
I squeue
I scancel



Workload manager commands

Job submission

SLURM PBS/TORQUE

sbatch [options] [filename ] qsub [options] [filename ]

I options specify
I resource requirements
I other job properties

I filename
I name of the batch script
I if not given, script is read from stdin

I results
I job appears in the job queue
I a job ID is assigned



Workload managers

Resource specifications

SLURM PBS/TORQUE

number of nodes --nodes=n -l nodes=n
processes per node --tasks-per-node=n -l nodes=n :ppn=p
time limit --time=hh:mm:ss -l walltime=hh:mm:ss

--time=minutes -l walltime=seconds
queue/partition --partition=part -Q queue



Workload managers

Job name and log file names

SLURM PBS/TORQUE

job name --job-name=jobname -N jobname
stdout file --output=filename -o filename
stdin file --error=filename -e filename
default names slurm-jobID.out jobname.ojobID

jobname.ejobID
use jobID --output=file.o%j
join stderr into stdout specify --output -j oe

but not --error



Workload managers

E-mail notification

SLURM PBS/TORQUE

e-mail address --mail-user=address -M address
notifications --mail-type=BEGIN -m b

--mail-type=END -m e
--mail-type=FAIL -m a
--mail-type=ALL -m abe



Workload managers

Structure of batch scripts

I options can be specified on the command line or at the
beginning of batch scripts

SLURM PBS/TORQUE

#!/bin/bash #!/bin/bash
#SBATCH --job-name=job1 #PBS -N job1
#SBATCH --nodes=2 #PBS -l nodes=2
#SBATCH --time=00:10:00 #PBS -l walltime=00:10:00

command command
. . . . . .



Workload managers

Environment variables that can be used in batch scripts

SLURM PBS/TORQUE

job ID $SLURM_JOB_ID $PBS_JOBID
job name $SLURM_JOB_NAME $PBS_JOBNAME
nodes allocated $SLURM_JOB_NODELIST $PBS_NODEFILE

(a list) (a filename)

working directory
at submit time $SLURM_SUBMIT_DIR $PBS_O_WORKDIR

default
working directory $SLURM_SUBMIT_DIR $HOME



Workload managers

Environment variables
I SLURM provides environment variables that contain resource

specifications

SLURM

number of nodes $SLURM_JOB_NUM_NODES
processes per node $SLURM_TASKS_PER_NODE

CPUs (threads) per process $SLURM_CPUS_PER_TASK
(value from --cpus-per-task)



Workload manager commands

Show job queue / job status information / job ID

SLURM PBS/TORQUE

all jobs squeue qstat
own jobs squeue -u $USER qstat -u $USER
single job squeue -j jobID qstat jobID



Workload manager commands

Job status indicators

SLURM PBS/TORQUE

pending/queued P Q
running R R
completed CD C
failed F
cancelled CA



Workload manager commands

Cancel a waiting job / abort a running job

SLURM PBS/TORQUE

scancel jobID qdel jobID



Workload managers

Starting interactive sessions/batch jobs

SLURM PBS/TORQUE

salloc [resources] qsub -I [resources]



Workload managers

SLURM command srun

I in batch jobs
I launches parallel/MPI program
I replaces mpirun/mpiexec

I in interactive batch jobs (after salloc)
I is necessary to start any program on the allocated node(s)

I in a login session
I runs a (parallel) program under control of the batch system



Workload managers

Other SLURM commands
I sinfo

I shows information on nodes and partitions
I sacct -j jobID

I shows accounting information



Benchmarking (Basic)



Benchmarking

Definition
I determination of hard- or software performance

by controlled experiments

I benchmark can refer to
I a controlled experiment with a single program
I a set of programs used for benchmarking

Motivation
I understanding performance of parallel applications

I is there a speedup?
I is the speedup reasonably large?



Benchmarking hardware

Linpack and the TOP500 list

I TOP500
I https://www.top500.org
I list of the 500 fastest computers in the world

I Linpack benchmark
I http://www.netlib.org/benchmark/hpl
I determines the ranking in the TOP500 list



Benchmarking parallel software

Questions that should always be answered

I What is the scalability of my program?

I How many cluster nodes can be maximally used, before the
efficiency drops to values which are unacceptable?

I How does the same program perform in different cluster
environments?



Benchmarking

General tuning possibilities

I use of hyper-threads
I mapping of processes to nodes
I pinning of processes/threads to CPUs/cores
I choice of compilers

I e.g. GNU, Intel, PGI
I choice of optimization levels

I -O2, -O3, . . .
I PGO (Profile Guided Optimization)
I IPA/IPO (Inter-Procedural Analyzer/Optimizer)

I choice of libraries
I BLAS (Basic Linear Algebra Subprograms)
I FFT (Fast Fourier Transform)



Benchmarking

General questions

I Are the best known algorithms employed?

I Does observed performance persist if the environment changes?



Benchmarking

Benchmarking parallel programs

I MPI programs
I measure runtimes depending on the number of nodes

I OpenMP programs
I measure runtimes depending on the number of cores



Benchmarking

Parallel speedup

S = sequential runtime
parallel runtime

Parallel efficiency

E = S
number of nodes or cores



Benchmarking

Example: calculation of π

version runtime [s]
cluster
nodes

total
cores speedup efficiency

OpenMP 2800.0 1 1.00 100%
OpenMP 1414.1 2 1.98 99%
OpenMP 707.1 4 3.96 99%
OpenMP 360.8 8 7.76 97%

MPI 180.5 1 16 1.00 100%
MPI 92.1 2 32 1.96 98%
MPI 47.5 4 64 3.80 95%
MPI 25.1 8 128 7.19 90%



Benchmarking

Runtime measurement
I shell built-in time command

I can be used for any runtime measurement

time mpirun ... my-mpi-app

I /usr/bin/time/
I reports usage of other resources (memory, I/O) as well
I interesting for single-process programs (including OpenMP)

export OMP_NUM_THREADS=...
/usr/bin/time my-openmp-app



Benchmarking

Scaling

I good scalability
I efficiency remains high when the number of processors is

increased

Weak scaling

I problem size ∝ number of cores
I “How big may the problems be that I can solve?”

Strong scaling

I problem size ≡ constant
I “How fast can I solve a problem of a given size?”



Benchmarking

Weak scaling



Benchmarking

Typical weak scaling behaviour

I communication overhead of boundary exchange increases at
low process counts

I sustained performance per process is roughly constant at high
process counts



Weak scaling plot example



Benchmarking

Typical strong scaling behaviour

I domain size per process decreases
I communication overhead increases
I sustained performance per process decreases

Goal
I determination of an optimal number of processes to use



Strong scaling plot examples (1)



Strong scaling plot examples (2)



Strong scaling plot examples (3)



Benchmarking / tuning

Profile Guided Optimization (PGO)

I step 1
I run the instrumented (and therefore relatively slow) version of

the binary with representative input data
I collect information about which branches are typically taken and

other typical program behavior
I step 2

I recompile with this information to build a faster program



Benchmarking / tuning

I/O

I choose an adequate file system
I global file system with HDDs
I local file systems with SSDs



Benchmarking pitfalls

Break-even considerations
I consider efforts

I HPC resources explicitly used for that purpose
I human time



Benchmarking pitfalls

Definition of speedup S

S = T1
Tparallel

Conventional speedup

I use the same version of an algorithm (the same program) to
measure T1 and Tparallel

Fair speedup

I use best known sequential algorithm to measure T1



Benchmarking pitfalls

Features of current CPU architectures
I varying clock rates and turbo modes

I for benchmarking CPUs should be in “thermal equilibrium”
I hardware threads / hyper-threads

I counted as CPUs by the operation system
I it might not be clear what counts as a core



Benchmarking pitfalls

Shared resources
I other user’s activities can influence runtime

I I/O on global file systems
I program execution on shared nodes



Benchmarking pitfalls

Reproducibility

I there are parallel algorithms which may produce non
deterministic results and runtimes, due to inherent effects of
concurrency

I some parallel tree-search algorithms
I event-driven simulations


